Cuda for Physicists

David Poliakoff
Jitu Das
Jonathan Gluck
Advisors: Dr. Randall Hall and Dr. Mark Jarrell
Software interface to NVIDIA graphics cards.
Programming for graphics cards can lead to incredible speed increases using (relatively) cheap hardware.
Budget supercomputing
What CUDA isn’t

- Accessible for non-programmers
 - By default, C style memory allocation
 - Lacks some fairly basic functions (Random Number Generator)

- Without “quirks”
 - Memory has a nasty habit of disappearing between functions
 - Generally, loads of things you don’t need to worry about in serial processing come into play
What I’m doing

- Often along with Jonathan Gluck and Jitu Das, I’m looking to help scientists (primarily physicists, but others as well) implement code on CUDA without too much fuss.
- Hopefully we’ll also get something more generally useful (a useful library of code for general use).
Challenges

- Simplify thread management/CUDA calls
 - Thread – CUDA Threads can be thought of as series of instructions which must run concurrently
- “common_functions.h” is impossible
 - Data retention between CUDA calls
 - Breaks a LOT of software engineering ideas
Desirable Outcome

- Code snippets (not functions) that are easy to throw within a given CUDA function
 - Snippets are text to copy between functions, functions are compilable
 - Need to be simple and efficient
 - Examples
 - “Random” number generation
 - Basic Linear Algebra Subprograms (BLAS)
Main Products

- Dr. Hall and Dr. Jarrell are giving us some of the simulations they run
- Metropolis-Hastings algorithm
 - Jitu and Jonathan will give more details