Quantum Teleportation on the IBM Quantum Computer

Aliza Siddiqui¹, Sumeet Khatri¹, Mark Wilde¹,²
Department of Physics & Astronomy, Louisiana State University¹
Center for Computation and Technology, Louisiana State University²

Introduction

• Years ago, David Deutsch proposed the following question: Is there a (single) universal computing device which can efficiently simulate any other physical system?
• Deutsch observed that ordinary, everyday computers based on Turing’s model had a lot of trouble simulating quantum mechanical systems.
• To answer his question affirmatively, Deutsch had to invent a new type of computing system known as the Quantum Computer.
• A Quantum Computer can do everything a conventional computer can do, but is also capable of performing quantum computing tasks such as quantum teleportation, quantum clock synchronization, and quantum key distribution.

STATE OF A QUBIT

The state of a qubit can be represented by a two-dimensional vector or by the following equations:

$$\Psi = \cos \theta/2 |0> + \sin \theta/2 e^{i\phi} |1>$$

$$|\psi> = \alpha |0> + \beta |1>$$

$$|0> = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1> = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• Like logic gates in classical computing, the state of a qubit can be manipulated by different quantum logic gates which are represented by matrices.

Quantum Logic Gates

The X Gate
Acts on a single qubit
Quantum Equivalent of the NOT gate

The Hadamard Gate
Acts on a single qubit
Puts qubits in superposition of their states

The Controlled-NOT Gate
Acts on two qubits
If the control qubit is in state 1, the target qubit is bit flipped

Simulating Quantum Teleportation on Quantum Computer

• **Quantum Teleportation**: Data transmission (such as a state) from one location to another without physically transmitting the information.
• **Principle of Deferred Measurement**: If measurement results are used at any state of the circuit then the classically controlled operations can be replaced by conditional quantum operations.

References

Acknowledgements

I would like to thank my mentors Sumeet Khatri, Dr. Mark Wilde, and Dr. Jonathan Dowling for their support.

Fidelity of Teleportation

<table>
<thead>
<tr>
<th>Angle</th>
<th>Fidelity without noise</th>
<th>Fidelity with noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>π/18</td>
<td>1.0</td>
<td>0.84765</td>
</tr>
<tr>
<td>π/9</td>
<td>1.0</td>
<td>0.828125</td>
</tr>
<tr>
<td>π/6</td>
<td>1.0</td>
<td>0.872070</td>
</tr>
<tr>
<td>2π/9</td>
<td>1.0</td>
<td>0.846679</td>
</tr>
<tr>
<td>5π/18</td>
<td>1.0</td>
<td>0.823242</td>
</tr>
<tr>
<td>π/3</td>
<td>1.0</td>
<td>0.815429</td>
</tr>
<tr>
<td>7π/18</td>
<td>1.0</td>
<td>0.792968</td>
</tr>
<tr>
<td>4π/9</td>
<td>1.0</td>
<td>0.756835</td>
</tr>
<tr>
<td>π/2</td>
<td>1.0</td>
<td>0.796875</td>
</tr>
</tbody>
</table>

Figure 1: Traditional Unidirectional Quantum Teleportation Circuit [1]

Figure 2: Modified Unidirectional Quantum Teleportation Circuit based on Principle of Deferred Measurement

Figure 3: Table depicting average fidelity values of different quantum computers compared to their simulation noise models

Figure 4: Table depicting average fidelity values of different quantum computers compared to their simulation noise models

Conclusion/Future Work

• Study Bidirectional Teleportation which involves both parties sending an arbitrary quantum state to the other party.
• Possible Directions:
 - Figure out what trigger qubits are for
 - Try to build a bidirectional super dense coding circuit
 - Try to remodel circuit using fewer qubits

Figure 5: Bidirectional Teleportation Circuit [2]