Evaluation of a Method for Simultaneous Optimization of Multilayer Photonic Nanostructures

Allison G. Miller\(^1\), Corey Matyas\(^2\), Georgios Veronis\(^3,4\)

\(^1\) Department of Chemistry, Saint Mary’s University of Minnesota
\(^2\) Department of Physics and Astronomy, Louisiana State University
\(^3\) School of Electrical Engineering and Computer Science, Louisiana State University
\(^4\) Center for Computation and Technology, Louisiana State University

July 25, 2018
What is a photonic nanostructure?

- Layered materials, with varying thicknesses (nanoscale) and optical properties
- Overall structure has unique optical properties: absorption, reflection, transmission
- Applications: fiber optics, anti-reflection coatings, mirrors

Modeling photonic nanostructures: transfer matrix method

- Derived from Maxwell’s equations
- Can find the overall optical properties of a structure by finding the optical properties of each layer
- Depends on only wavelength of incident light, thickness of layer, and index of refraction of materials

\[
\begin{bmatrix}
 E_z(x = a) \\
 Z_0 H_y(x = a)
\end{bmatrix}
= \begin{bmatrix}
 \cos(k_1 a_1) & -i \sin(k_1 a_1) \frac{\omega}{ck_1} \\
 -i \sin(k_1 a_1) \frac{ck_1}{\omega} & \cos(k_1 a_1)
\end{bmatrix}
\begin{bmatrix}
 E_z(x = 0) \\
 Z_0 H_y(x = 0)
\end{bmatrix}
\]
Prior Work: Hybrid Optimization Algorithm

Three steps

- Monte Carlo Simulation: random structure generation with given materials
- Genetic Algorithm: optimizes thickness of each layer given viable material composition
- Pattern Search: locally minimizes results
Five Layer Absorber

Materials: MgF₂, TiO₂, Si, Ge, Cr, Ag, HfO₂, SiC, W, Mo
Monte Carlo Simulation

- Probability for 1 million structures converges at 69%
- Overall probability distribution: deviation from expected linear trend
Conclusion and Future Work

Conclusion

- Although the Monte Carlo simulation is random, the optimal structure material composition is repeatable.
- Overall probability distribution isn’t linear: underlying pattern to material composition?
- Indicative of material composition being more important than thickness in designing a structure.

Future Work

- Investigate other methods for choosing material composition.
- Explore other general purpose optimization algorithms for optimizing thicknesses.
- Look into material properties and their impact on structure design.
Questions?

This work was supported by the National Science Foundation under award #ACI-1560410. Portions of this research were conducted with high performance computing resources provided by Louisiana State University (http://www.hpc.lsu.edu).