Simplified Analytical Simulation of Mass Transfer in Double White Dwarf Systems

Sara Vannah, Wellesley College
Mentors: Juhan Frank and Hartmut Kaiser
Introduction

- Double white dwarf contact binary
- Source of gravitational waves
- Supernovae give standard luminosity for determining distances
- Current 3-D hydrodynamic models: slow, resource-intensive

NASA/Dana Berry, Sky Works Digital.
Goal

- Accurate simulation to run more efficiently than current complicated models
- Simplifying assumptions to run set of differential equations
- Match to previously published work1,2

Figure 4: ESO/L. Caçada
Stable Case, $q=0.4$
Behavior for Stable Case

Red = binary separation
Black = Mass transfer rate
Green Dashed = donor angular momentum
Blue dashed = accretor angular momentum
Unstable Case, $q=1.3$
Behavior for Merging Case

Red = binary separation
Black = Mass transfer rate
Green Dashed = donor angular momentum
Blue dashed = accretor angular momentum
References and Acknowledgments

- This material is based upon work supported by the National Science Foundation under award OCI-1263236 with additional support from the Center for Computation & Technology at Louisiana State University.