
(

Introduction

Computer visualization is the conduit

between the hard, quantified data of

experimentation and a human’s intuitive

understanding. Consequently, computer

visualization systems are a necessity in

displaying not just traditionally collected

data, but also data acquired from

simulated experiments, due to the

incredibly large volume of data acquired

in such experiments. The ultimate goal of

computer visualization is to have efficient

and intuitive representations, not only for

the benefit of scientists and their peers,

but also for the understanding of the

general public.

OpenGL

Acknowledgments

This material is based upon work supported

by the National Science Foundation under

award OCI-1263236 with additional

support from the Center for Computation

& Technology at Louisiana State University.

Conclusion

The visualization program displays the

atomic data in an accurate and

aesthetically pleasing manner. The

program also encourages basic user

interaction.

Out of the two methods discussed,

rendering 2-D pseudo-spheres is

generally preferred. Solving quadratic

equations and culling fragments is more

computationally efficient than rendering

3-D spheres since individual triangles are

not needed. It also creates cleaner

visuals, as modeling is done on a pixel-

by-pixel basis.

Future work includes making the

visualization more intuitive and

interactive for the user. For example,

giving shadows to each particle to aid in

depth perception, and implementing

outlines on each particle for easy

differentiation.

Tyler Spears1, Bidur Bohara2, Bijaya B. Karki2

1 College of Engineering, McNeese State University, Lake Charles, LA
2LSU School of Computer Science and Electrical Engineering, Baton Rouge, LA

Visualization Techniques

The flexibility of OpenGL allows for several different rendering techniques for visualizing atomic data.

The first, and most readily implemented, method is the rendering of 3-D spheres. Through the use of

freeGLUT (an open-source GL Utility Toolkit, a C++ library), true 3-D spheres are rendered in 3-D

space.

The second method utilizes the writing of custom shaders written in GLSL. Through the use of point-

sprites (2-D points positioned in 3-D space, usually represented as a single pixel in screen space). The

coefficients of the quadratic equation of the sphere are then encoded into a 4x4 matrix, and normalized

and diagonalized to form the parameter space. From there, the Variance, Model, View, and Projection

Matrices are used to compute the dimensions of a bounding box, a 2-D rectangle that determines the

dimensions of the point sprite. A ray-surface intersectional quadratic equation, calculated in the

fragment shader, is then used to determine which fragments are to be culled, resulting in a circular

representation. Using the Phong shading model, the spheres are given lighting, forming the illusion of

being 3-D spheres.

References

1) "Rendering Pipeline

Overview." Opengl.org. N.p., 10 May

2015. Web. 29 July 2015.

2) Sigg, Christian, et. al. “GPU-Based Ray-

Casting of Quadratic Surfaces”.

Eurographics Symposium on Point-

Based Graphics, Boston,

Massachusetts, July 29-30, 2006. Ed. M.

Botsch, B. Chen. 2006.

Figure 1: The

OpenGL

rendering

pipeline.

Figure 4: The sequence of coordinate spaces

used in OpenGL, with an additional Parameter

Coordinates space useful for rendering

quadratic surfaces.

Due to the flexibility and

computational resource

requirements of

visualizing large

amounts of data, a

general-purpose, low-

level graphical

programming framework

is often utilized. The

operating-environment

independent framework

OpenGL (Open

Graphics Library) is a

popular choice for

visualization. OpenGL is

a graphics specification

that is most often

implemented in C++,

and specifies GLSL (GL

Shading Language).

GLSL is a C-like

language used to

program custom

shaders (programs that

run on the GPU and

produce visual output).

Figure 2: Rendering atomic species

and distance traveled. This

representation displays the atom’s in

their initial position, as indicated by

their dark colors, and their type,

indicated by size.

Figure 3: Atomic data representation

after a set amount of time. The more

visible colors indicate a longer

distance traveled from the atom’s

respective origin point.

