The Center for Computation & Technology REU at LSU

Simón Lorenzo1,2, Christopher Granier1,2, Jonathan Dowling1,2 and Georgios Veronis3,4

1 Department of Physics and Astronomy: Louisiana State University
2 Hearne Institute for Theoretical Physics: Louisiana State University
3 School of Electrical Engineering and Computer Science: Louisiana State University
4 Center for Computation and Technology: Louisiana State University
Problems:
- Incandescent bulbs are inefficient
- Fluorescent bulbs use mercury
- LEDs are expensive to fabricate

Figure 3: Traditional Tungsten Filament Emittance

Peak emittance of 0.55 at 400 nm and 800 nm
IMPROVING THE INCANDESCENT BULB

- Goal: Design a better filament
 - Operates at 2800 K
 - Materials must be non-hazardous
 - Layered Structure: eases manufacturing
 - Emittance peaks from 390-700 nanometers
 - Emittance peaks over most angles
The Filament:

- Layers of Tungsten and Silicon Carbide
- Low material and fabrication costs
- High melting points: Tungsten: 3400 K, Silicon Carbide: 3000 K
Kirchhoff's Law for Thermal Equilibrium:

\[E = A = 1 - R - T \]

- \(E \) is emittance, \(A \) is absorbance, \(R \) is reflectance, \(T \) is transmittance

The transfer-matrix \((M)\):

- Elements help determine \(R \) and \(T \)
- Found through multiplication of boundary and propagation matrices

\[
M = \begin{bmatrix}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{bmatrix}; \quad R = \frac{1}{|M_{11}|^2}; \quad T = \left| \frac{M_{21}}{M_{11}} \right|^2
\]
OPTIMIZING EMISSION: SOFTWARE

- Hybrid Optimization Algorithm:
 - Combination of stochastic and deterministic optimization algorithms
 - Optimizes filament layer dimensions for desired emittance values
 - Dimensions range from 0-800 nanometers
Hybrid Optimization Algorithm (cont.):

- Genetic: Stochastic structure changes
 - Random filament structures are “mated”
 - Fitness Function assigns emittance values
 - Passes best structure to new generation
- Local: Deterministic layer changes
 - Passes best structure to new generation

![Figure 2: Flow of the Hybrid Algorithm](image_url)
Figure 3: Traditional Tungsten Filament Emittance

Figure 4: Tungsten/Silicon Carbide Filament Emittance

Emittance

Peak emittance of 0.55 at 400 nm and 800 nm

Peak emittance of 0.99 from 400 nm to 650 nm
FUTURE WORK

- Continued optimization of current structure
- Rewrite from FORTRAN 77/90 to C++
- Parallelization of Transfer-matrix calculations
ACKNOWLEDGMENTS/SOURCES

- The Hearne Institute for Theoretical Physics, LSU
- The National Science Foundation (NSF) #OCI-1005165 and #OCI-1263236
QUESTIONS?