Triangle Mesh Optimization

By: Jonathan Heath

Mentor: Shawn Walker

Outline

- * Background
- * Distributing Meshpoints
- * Projection Method
- * k Nearest Neighbors
- * Exterior Domain
- * Outer Boundary Force
- * Results
- * Conclusion

Background

Meshes are commonly used in computer graphics and simulations.

Distributing Meshpoints

Coulomb's Law:

$$F(r) = k_e q \sum_{i=1}^{N} q_i \frac{r - r_i}{|r - r_i|^3}$$

Projection Method

k Nearest Neighbors

3-D Case

Exterior Domain

Outer Boundary Force

Signed Distance Function

circle:
$$\phi = C - \sqrt{x^2 + y^2}$$

Comparison

0.5

-0.5

-1.5

15 Nearest Neighbors

Comparison

Conclusion

- * Meshpoints were distributed across a given domain by giving the points properties that of electric charges.
- * Mesh quality was improved through the projection and k nearest neighbors methods.
- * Future work includes decreasing computation time (ex: writing C code) and exploring further into using a second domain to improve mesh quality.

Questions?

