Molecular dynamic simulations of interactions of bile salts and their acids with a DMPC lipid bilayer

Anya Leach1, Brian Novak2, Jieqiong Lin2, and Dorel Moldovan2

1Department of Physics, West Virginia University, Morgantown, WV
2Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA
Purpose of Project

Goal: Obtain better understanding of the physiological function of bile salts and their acids on the atomic scale.

Investigate:
- Bile molecules’ trajectories during simulations
 - Descent into lipid bilayer
 - Orientation during interactions
- Intermolecular interactions
 - Hydrogen bonding
Bile Molecules (BM)

- BM are bio-surfactants which facilitate fat digestion, transportation, & cell membrane absorption of lipids, nutrients, and other molecules in the small intestine.

Modified from http://cdn.aboutgastro.com
Molecular Dynamics (MD) Methodology

Molecular System
- Total atoms: **24,943**
- Background salt concentration: **0.15 M**

Running Simulations
- Energy Minimization
- **2.5 ns** Equilibration
- Full simulation
 - Run time: **144 hours**
 - Output: **110 ns**

Simulations were performed Groningen Machine for Chemical Simulations\(^4\) (GROMACS) 4.6.1, visualized using Visual Molecular Dynamics \(^5\) (VMD) 1.9.1, & run on the LONI supercomputers.
Results MD Simulation

1 snapshot = 4ns
Results

Trajectory of BM

Greatest depth into bilayer:

1.23 nm **DCA** > 1.15 nm **DCD** > 1.07 nm **UDA** > 1.01 nm **UDD** > 0.19 nm **CHA** > 0.11 nm **CDD** > 0.07 nm **CDA** > 0.02 nm **CHD**
Axis 1:
- Initially, the hydrophilic face will point toward bilayer center
- Then will flip as BM descends to hydrophobic region

Axis 3:
- DCD & UDD continuously pointed tail away from bilayer center
- DCA & UDA prefer to lay parallel to the plane of the bilayer
Results

Intermolecular Interactions

Average hydrogen bonds in hydrophilic regions:
1.75 bonds CHD > 1.43 bonds CHA > 1.03 bonds CDD > 0.76 bonds CDA

Average hydrogen bonds in hydrophobic region:
1.90 bonds DCA > 1.64 bonds DCD > 1.62 bonds UDD > 1.35 bonds UDA
Conclusions

- DCA appears to most successfully absorbing into the bilayer
- Primary BM remain near or above the bilayer surface
- Secondary BM settle into the hydrophobic region
- Protonation of COO\(^{-}\) facilitates greater descent
- Reduced number of OH groups allows absorption into bilayer
- Stereochemistry differences between CDD-CDA and UDD-UDA pairs indicates OH orientation affects absorption greatly
Conclusions

- DCA appears to most successfully absorbing into the bilayer
- Primary BM remain near or above the bilayer surface
- Secondary BM settle into the hydrophobic region
- Protonation of COO' facilitates greater descent
- Reduced number of OH groups allows absorption into bilayer
- Stereochemistry differences between CDD-CDA and UDD-UDA pairs indicates OH orientation affects absorption greatly
Conclusions

- DCA appears to most successfully absorbing into the bilayer
- Primary BM remain near or above the bilayer surface
- Secondary BM settle into the hydrophobic region
- Protonation of COO\(^-\) facilitates greater descent
- Reduced number of OH groups allows absorption into bilayer
- Stereochemistry differences between CDD-CDA and UDD-UDA pairs indicates OH orientation affects absorption greatly
Conclusions

- DCA appears to most successfully absorbing into the bilayer
- Primary BM remain near or above the bilayer surface
- Secondary BM settle into the hydrophobic region
- Protonation of COO\(^-\) facilitates greater descent
- Reduced number of OH groups allows absorption into bilayer
- Stereochemistry differences between CDD-CDA and UDD-UDA pairs indicates OH orientation affects absorption greatly
Conclusions

- DCA appears to most successfully absorbing into the bilayer
- Primary BM remain near or above the bilayer surface
- Secondary BM settle into the hydrophobic region
- Protonation of COO\(^-\) facilitates greater descent
- Reduced number of OH groups allows absorption into bilayer
- Stereochemistry differences between CDD-CDA and UDD-UDA pairs indicates OH orientation affects absorption greatly
Future Work

- Investigations of a forced BM bilayer flip
- BM micelle interactions with bilayer
- Effects of BM on membrane permeability and flexibility

Understanding interfacial interactions can yield development of new drugs for improving:
- lipid digestion
- absorption of fat-soluble nutrients and vitamins
- possible reduction of saturated trans-fats and exogenous cholesterol intake
References and Acknowledgments

1 Maldonado-Valderrama et al., Ad. in Colloid & Interface Science, 165, 36-46 (2011).
3 Hofmann & Hagey, Cellular & Molecular Life Sciences, 65, 2461-2483

This material is based upon work supported by the National Science Foundation under award OCI-1263236 with additional support from the Center for Computation & Technology at Louisiana State University. Computational resources were provided by Louisiana Optical Network Initiative (LONI) and HPC@LSU.

Any Leach would also like to personally thank Dr. Mayank Tyagi for allowing her to use his workstation for data analysis, as well as Brad and Eric for help with Linux.