

Materials & Methods
● Hardware: Nvidia GTX460 1GB, Nvidia M2070
● Programming Languages: CUDA, FORTRAN 90
● Other Software & Techniques: HDF5, PGI Accelerator,

CuBLAS Streams

Results & Conclusions
● Started to develop code to read/write data between

modules of code
● Found PGI Accelerator is not optimal for the

development of this code
● Found CuBLAS streams had severe issues with

scalability
● Determined, and have yet to implement, an algorithm

for effective use of the capabilities of Nvidia GPUs

 It is not efficient to have different Markov Chains
performing different operations simultaneously. We
conclude that we must partition proposals and updates
such that the two steps do not happen concurrently. This
can be achieved by first proposing and accepting changes
to all MPs at the same time. This step can be repeated
until the associated updates are sufficient to use most of
the GPU resources. Only then will the updates be done,
and done simultaneously. By cycling between these two
mutually exclusive steps, we avoid the problem of
concurrent proposals and updates. See figure 4 for a
graphical description.

Hirsch-Fye Quantum Monte Carlo
 Hirsch-Fye Quantum Monte Carlo (HFQMC) is used
to model interacting electron systems, such as the
Hubbard Model. It uses a Green function to describe the
motion of electrons through space and time. HFQMC
works with the Green function by evolving it through a
Markov Chain Monte Carlo process. While most other
Monte Carlo algorithms spend much of their time
proposing moves, HFQMC traditionally spends the
majority of its time updating the Green function after
accepting proposed moves. Our goal this summer was to
improve existing HFQMC code by extending it to
effectively use graphics processing units.

Hirsch-Fye Quantum Monte Carlo Utilizing Graphics Processors
David Poliakoff: Millsaps College, Joseph Caprino: Rochester Institute of Technology

Future Work
● Implementing techniques for Hirsch-Fye GPU code
● Optimizing HFQMC GPU code
● Writing thin rectangular matrix-matrix multiply for GPU
● Assessing benefit of offloading more of program to GPU
● Profiling code to see where it spends its time

Acknowledgments
NSF grant OCI-1005165 and the Louisiana State University Center for
Computation and Technology

References
CUDA Fortran Programming Guide and Reference, V. 11.4.
STMicroelectronics, Inc. (2011).

NVIDIA CUDA C Programming Guide, V. 4.0. NVIDIA (2011).

E. Gull, A. Millis, and A. Lichtenstein, A. Rubtsov, M. Troyer, and P.
Werner, Rev. Mod. Phys. 83, 349 (2011).

A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys.
68, 13 (1996).

K. Haule. “Quantum Monte Carlo”. Rutgers. (2006).
<http://www.physics.rutgers.edu/grad/509/qmc.pdf>

● Originally designed for
computer graphics

● Now more capable of other
types of computations

● Can do more floating point
operations per second
(FLOPS) than the CPU

● Require a programming
paradigm which differs
from typical CPU
programming

● Uses are limited and
specialized

G' G= + A Bx

The Cycling HFQMC
Markov Process (MP)

Proposal and Acceptance Process (PA): computationally cheap

Matrix Update Process (MU): computationally expensive

Fig. 3: Right are several
independent Markov processes
(MPs). This could suggest an
execution model of each MP
having its own completely
independent computer process on
the GPU. However, by testing
with other code, many
independent processes running
on the GPU were found to cause a
decrease in performance.

Fig. 2: A modern graphics card
in a computer system

Fig. 1: How the HFQMC Markov process evolves the Green
function, G. Note that A and B should be at least 32 wide to
increase data reuse.

Fig. 4: A solution for the order of kernel execution of the Markov
processes on the GPU

Contact
David Poliakoff: david.poliakoff@gmail.com

Joseph Caprino: jgc6224@rit.edu

The Graphics Processing Unit

mailto:david.poliakoff@gmail.com
mailto:jgc6224@rit.edu

	Slide 1

