
The first week was mostly spent doing research on my topic, reading about

spintronics, and learning more about the physics of the code. This required me to

learn some quantum mechanics. I also needed to learn OpenMP since this would

be primarily what I would be working with. I took two, week-long courses over which

I learned MPI and OpenMP. I also went to the Petascale programming workshop by

the VSCSE where I learned more about hybrid computing and was able to try out

the new parallel computing methods I had learned. I added OpenMP to do loops

that calculated matrix to matrix multiplication, and found the speed-up from the

original code to the code with the added OpenMP.

MethodsAbstract
The purpose of this project is to be able to calculate the

susceptibility of a magnetic material by more efficient means.

Significant speed-up can be gained through a use of hybrid

programming. By implementing OpenMP on loops in an existing

MPI code, the code can be made more efficient. When the

program gets a speed-up we use fewer resources such as

computing power and time, thus making hybrid programming

important in optimization of code. Our code also required the

use of OpenMP because of the advantages OpenMP offers with

the use of shared memory. Since our code deals with matrix to

matrix multiplication there was not enough memory, and

OpenMP allowed us to do our calculations even with our limited

resources.

Conclusion

• Hybrid parallelization is quickly becoming a more advantageous

method of parallelization

• It can allow for more improved efficiency than just OpenMP or MPI

alone.

• The use of Open MP can allow computation there were not

enough resources to complete previously.

Next Steps

• Understand more about the properties of magnetic materials.

• We have a need for smaller more efficient devices. These

materials maybe used it the next generation of devices

• Gain a significant speed-up of the program.

• Calculate the susceptibility of a two particle magnetic material.

• Learn more about the magnetic and electrical properties of a

material, and allow better manipulation of these properties.

Purpose & Aims

Hybrid Programming to Calculate the

Susceptibility of Magnetic Materials
B. Shannon, K.-S. Chen, K. Mikelsons, J. Moreno, M. Jarrell

• Implement OpenMP to other loops

• Determine if another type of OpenMP on these loops would be

more efficient

• Add OpenMP to other pragmas within the code for even greater

speed-up

References
• Yu et al. “Nonlocal Effects on Magnetism in the Diluted Magnetic

Semiconductor Ga1-xMnxAs.” Phys. Rev. Lett. (2010)

• Wolf, S. A. et al. “Spintronics: A Spin-Based Electronics Vision for the Future.”

AAAS (November 2001)

• Juana Moreno, Randy S. Fishman, Mark Jarrell. “Transition Temperature of a

Magnetic Semiconductor with Angular Momentum j.” Phys. Rev. Lett. (2006)

Acknowledgments
• Center for Computational Technology

• Louisiana State University

• Louisiana Optical Network Initiative

• National Science Foundation

• Louisiana Board of Regents

• Partnerships for International Research and Education

Results

• OpenMP allows for the main program or “master

thread” to create several threads within the

parallel region to do the work simultaneously.

photo courtesy of

:http://www.dartmouth.edu/~rc/classes/intro_openmp/print_p

ages.shtml

• On the left is a graph of the magnetization of Ga1-xMnxAs with Mn doping at

x=.05 and the hole concentration p=.025

• The graph on the right shows the change of Ferromagnetic transition

temperature as a function of the hole concentration

Yu, et al., Phys. Rev. Lett. (2010)

• In our initial testing code, we found that our code did not use up enough memory

to see any benefits from using OpenMP.

• The testing code was too small and instead of making the code faster, actually

created more overhead with each thread that was opened.

• In our other attempts we ran OpenMP and were able to see the difference in time

that it took to run our code with different treads. However, there was too much

memory required to run our code with MPI to get a comparison.

• The graph shows that as the number of threads

increases when using OpenMP, the time it takes to

complete a calculation decreases.

• We tried to compare a serial code, but there was

not enough memory. The time the serial code took

without any numerical computation was .00170

seconds.

